Thursday, June 28, 2007

Church’s Thesis 15: Three last papers

The next paper in the Olszewski collection is Wilfried Sieg’s “Step by recursive step: Church’s analysis of effective computability”. And if that title seems familiar, that’s because the paper was first published ten years(!) ago in the Bulletin of Symbolic Logic. I’ve just reread the paper, and the historical fine detail is indeed interesting, but not (I think) particularly exciting if your concerns are about the status of Church’s Thesis now the dust has settled. So, given that the piece is familiar, I don’t feel moved to comment on it further here.

Sieg’s contribution is disappointing because it is old news; the last two papers are disappointing because neither says anything much about Church’s Thesis (properly understood as a claim about the coextensiveness of the notions of effective computability and recursiveness). Karl Svozil, in “Physics and Metaphysics Look at Computation”, instead writes about what physical processes can compute, and in particular says something about quantum computing (and says it too quickly to be other than fairly mystifying). And David Turner’s “Church’s Thesis and Functional Programming” really ought to be called “Church’s Lambda Calculus and Functional Programming”.

Which brings us to the end of the collection. A very disappointing (at times, rather depressing) read, I’m afraid. My blunt summary suggestion: read the papers by Copeland, Shagrir, and Shapiro and you can really give the other nineteen a miss ...

No comments: