After almost 500 posts, this will be the last post here, meaning at this URL ....

.... but I'll be continuing the Logic Matters blog at logicmatters.net (and all the posts here at Blogger have been imported to that address, though the aesthetics are at the moment a bit primitive).

Geeky explanation: At very long last, I'm joining the cool kids and am using the Wordpress platform on a hosted site. That's not in fact to make blogging easier -- I rather like the undistracting minimalism of Blogger -- but because Wordpress works as a nice content management system to build/maintain the rest of the Logic Matters website which I've rather neglected of late (thanks to The Daughter for a very helpful advice about why it would -- after the transition -- make updating much easier).

## Sunday, November 08, 2009

### The blog is dead .... long live the blog!

Posted by Peter Smith at 10:12 AM 4 comments

## Friday, November 06, 2009

### Gödel Without Tears -- 5

Here now is the fifth episode on the idea of a primitive recursive function. The preamble explains why this matters and where this is going. [As always, I'll be very glad to hear about typos/thinkos.]

The previous episodes are available:

Posted by Peter Smith at 3:16 PM 0 comments

## Wednesday, November 04, 2009

### Ruse gets a beta minus.

Philosophers don't get asked often enough to write for the newspapers and weeklies: so it is really annoying when an opportunity is wasted on second-rate maunderings. Michael Ruse writes in today's Guardian on whether there is an "atheist schism". And he immediately kicks off on the wrong foot.

As a professional philosopher my first question naturally is: "What or who is an atheist?" If you mean someone who absolutely and utterly does not believe there is any God or meaning then I doubt there are many in this group.Eh? Where on earth has that "or meaning" come from? In what coherent sense of "meaning" does an atheist have to deny meaning?

It gets worse. Eventually a lot worse.

If, as the new atheists think, Darwinian evolutionary biology is incompatible with Christianity, then will they give me a good argument as to why the science should be taught in schools if it implies the falsity of religion? The first amendment to the constitution of the United States of America separates church and state. Why are their beliefs exempt?That is so mind-bogglingly inept it is difficult to believe that Ruse means it seriously. Does Ruse really, really, think that the separation of church and state means that no scientific fact can be taught if it happens to be inconsistent with some holy book or religious dogma?

Ruse is upset by the stridency of Dawkins and others, and there is indeed a point to be argued here. But it is ironic that philosophers often complain that Dawkins misrepresents too many practising Christians (or Muslims, or whatever). For related misrepresentations -- if that's what they are -- are to be found in more or less any philosophy of religion book. I blogged here a while back about the Murray/Rea introduction, and remarked then about the unlikely farrago of metaphysical views it foisted upon the church-goer, views which have precious little to do with why you actually go to evensong or say prayers for dying, and which indeed deserve to be well Dawkinsed.

Posted by Peter Smith at 11:00 PM 6 comments

###
*The Autonomy of Mathematical Knowledge* -- Chap. 2, §§3-5

To return for a moment the question we left hanging: what is the shape of Hilbert's "naturalism" according to Franks? Well, Franks in §2.3 thinks that Hilbert's position can be contrasted with a "Wittgensteinian" naturalism that forecloses global questions of the justification of a framework by rejecting them as meaningless. "According to Hilbert … mathematics is justified in application" (p. 44), and for him "the skeptic's path leads to the death of all science". Really? But, to repeat, if that *is* someone's basic stance, then you'd expect him to very much want to know *which* mathematics is actually needed in applications, and to be challenged by Weyl's work towards showing that a "sceptical" line on impredicative constructions in fact *doesn't* lead to the death of applicable maths. Yet Hilbert seems not to show much interest in that.

At other points, however, Franks makes Hilbert's basic philosophical thought sound less than a claim about security-through-successful-applicability and more like the Moorean point that the philosophical arguments for e.g. a skepticism about excluded middle or about impredicative constructions will always be much less secure than our tried-and-tested methods inside mathematics. But in that case, we might wonder, if the working mathematician can dismiss such skepticism, why engage in "Hilbert's program" and look for consistency proofs?

Franks' headline answer is "The consistency proof … is a methodological tool designed to get everyone, unambiguously, to see [that mathematical methods are in good order]." (p. 36). The idea is this. Regimenting an area of mathematics by formalisation keeps us honest (moves have to be justified by reference to explicit axioms and rules of inference, not by more intuitive but risky moves apparently warranted by intended meanings). And then we can aim to use other parts of mathematics that aren't under suspicion -- meaning, open to *mathematical* doubts about their probity -- to check the consistency of our formalized systems. Given that formalized proofs are finite objects, and that finitistic reasoning about finite objects is agreed on all sides to be beyond suspicion, the hope would be to give, in particular, finitistic consistency proofs of mathematical theories. And thus, working inside mathematics, we *mathematically* convince ourselves that our theories are in good order -- and hence we won't be seduced into thinking that our theories *need* bolstering from outside by being given supposedly firmer "foundations".

In sum, we might put it this way: a consistency proof -- rather than being part of a foundationalist project -- is supposed to be a tool to convince mathematicians by mathematical means that they don't need to engage in such a project. Franks gives a very nice quotation from Bernays in 1922: "The great advantage of Hilbert's procedure rests precisely on the fact that the problems and difficulties that present themselves in the grounding of mathematics are transformed from the epistemological-philosophical domain into the domain of what is properly mathematical."

Well, is Franks construing Hilbert right here? You might momentarily think there must be a deep disagreement between Franks with his anti-foundationalist reading and (say) Richard Zach, who talks of "Hilbert's … project for the foundation of mathematics". But that would be superficial. Compare: those who call Wittgenstein an anti-philosopher are not disagreeing with those who rate him as a great philosopher! -- they are rather saying something about the *kind* of philosopher he is. Likewise, Franks is emphasizing the *kind* of reflective project on the business of mathematics that Hilbert thought the appropriate response to the "crisis in foundations". And the outline story he tells is, I think, plausible as far as it goes.

It isn't the whole story, of course. But fair enough, we're only in Ch.2 of Franks' book! -- and in any case I doubt that there is a whole story to be told that gives Hilbert a stably worked out position. It would, however, have been good to hear something about how the nineteenth century concerns about the nature and use of ideal elements in mathematics played through into Hilbert's thinking. And I do want to hear more about the relation between consistency and conservativeness which has as yet hardly been mentioned. But still, I did find Franks' emphases in giving his preliminary orientation on Hilbert's mindset helpful. *To be continued*

Posted by Peter Smith at 11:18 AM 1 comments

## Monday, November 02, 2009

###
*The Autonomy of Mathematical Knowledge* -- Chap. 2, §§1 & 2

Hilbert in the 1920s seems pretty confident that classical analysis is in good order. "Mathematicians have pursued to the uttermost the modes of inference that rest on the concept of sets of numbers, and not even the shadow of an inconsistency has appeared .... [D]espite the application of the boldest and most manifold combinations of the subtlest techiniques, a complete security of inference and a clear unanimity of results reigns in analysis." (p. 41 -- as before, references are to passages or quotations in Franks' book.) These don't sound like the words of a man who thinks that the paradoxes cause trouble for 'ordinary' mathematics itself -- compare Weyl's talk of the "inner instability of the foundations on which the empire is constructed" (p. 38). And they don't sound like the words of someone who thinks that analysis either has to be revised (as an intuitionist or a predicativist supposes) or else stands in need of buttressing "from outside" (as the authors of Principia might suppose).

Franks urges that we take Hilbert at his word here: in fact, "the question inspiring [Hilbert] to foundational research is not whether mathematics is consistent, but rather whether or not mathematics can stand on its own -- no more in need of philosophically loaded defense than endangered by philosophically loaded skepticism" (p. 31). So, on Franks' reading, Hilbert in some sense wants to be an anti-foundationalist, not another player in the foundations game standing alongside Russell, Brouwer and Weyl, with a rival foundationalist programme of his own. “[Hilbert’s] considered philosophical position is that the validity of mathematical methods is immune to all philosophical skepticism, and therefore not even up for debate on such grounds” (p. 36). Our mathematical practice doesn’t need grounding on a priori principles external to mathematics (p. 38). Thus, according to Franks, Hilbert has a “naturalistic epistemology. The security of a way of knowing is born out, not in its responsibility to first principles, but in its successful functioning” (p. 40).

Functioning in what sense, however? About this, Franks is (at least here in his Ch. 2) hazy, to say the least. “The successful functioning of a science … is determined by a variety of factors -- freedom from contradiction is but one of them -- including ease of use, range of application, elegance, and amount of information (or systematization of the world) thereby attainable. For Hilbert mathematics is the most completely secure of our sciences because of its unmatched success.” Well, ease of use and elegance are nice if you can get them, but hardly in themselves signs of *success* for theories in general (there are just too many successful but ugly theories, and too many elegant failures). So that seemingly leaves (successful) *application* as the key to the “success”. But this is very puzzling. Hilbert, after all, wants us never to be driven out of Cantor’s paradise where -- as Franks himself stresses in Ch. 1 -- “mathematics is entirely free in its development", meaning free because longer tethered to practical application. Odd then now to stress application as what essentially legitimises the free play of the mathematical imagination! (Could the idea be that some analysis proves its worth in application, and hence the worth of the mathematical methods by which we pursue it, and then other bits of mathematics pursued using the same methods get reflected glory? But someone who takes *that* line could hardly e.g. be as quickly dismissive of the predicative programme as Hilbert was or Franks seems to be at this point -- for Weyl, recall, is arguing that actually *applicable* analysis can in fact all be done predicatively, and so no reflected glory will accrue to classical mathematics pursued with impredicative methods since those methods are not validated by essentially featuring in applicable maths.)

So what *does* Hilbert’s alleged “naturalism” amount to? To be continued.

Posted by Peter Smith at 3:57 PM 0 comments

### Gödel Without Tears -- 4

Here now is the fourth episode [slightly corrected] which tells you -- for those who don't know -- what first-order Peano Arithmetic is (and also what Sigma_1/Pi_1 wffs are). A thrill a minute, really. Done in a bit of a rush to get it out to students in time, so apologies if the proof-reading is bad!

Here are the previous episodes:

Posted by Peter Smith at 1:20 PM 2 comments